### 技術論文

## 簡易回路で駆動される無機エレクトロルミネッセンスデバイスの性能に及ぼす トランス特性の影響

佐藤健人\*. 寉田柚希\*. †佐藤修一\*

# Influence of Transformer Characteristics on the Performance of Inorganic Electroluminescent Devices Driven by a Simple Circuit

by

Taketo SATO\*, Yuzuki TSURUTA\* and †Shuichi SATO\* (Received Dec. 28, 2024; Accepted Jan. 16, 2025)

#### Abstract

Optimization of driving circuits is crucial for enhancing the performance of inorganic electroluminescence (EL) devices, alongside the development of luminescent materials. However, a survey of academic literature reveals a scarcity of research on driving circuits compared to material studies, with most reported inorganic EL devices employing alternating current (AC) thin-film structures and focusing on high-luminance phosphor materials. This paper investigates the influence of transformer electrical characteristics on input waveforms and emission properties using a simple driving circuit. The experimental results demonstrate that transformer impedance and current capacity significantly affect device luminance, efficiency, and reliability. High-frequency driving is shown to be effective for achieving high luminance, but challenges such as transformer heating, electromagnetic noise, and device degradation are also identified. These findings emphasize the importance of driving circuit design and provide guidelines for optimizing the performance of inorganic EL devices. The study highlights the necessity of collaborative design among materials, devices, and circuits to achieve further advancements in inorganic EL technology.

Keywords: Inorganic electroluminescence, Driving circuit, Transformer, High-frequency driving, Impedance characteristics

### 1. はじめに

無機エレクトロルミネッセンス (EL) は、電界励起による発光現象であり、ディスプレイ、照明、センサなどの幅広い応用が期待されている <sup>1),2)</sup>. Fig. 1 左に示すように、一般的な無機 EL デバイスは、数 10 µm の厚さを有する発光層に誘電体層を加えた構造をとる。交流電界の印加により、誘電体層と発光層の界面準位にトラップされた電子が発光

令和6年12月28日受付

\* 東京電機大学工学部電子システム工学科:〒120-8551 東京都足立区千住旭町5

TEL 070-7667-9122

s.sato@mail.dendai.ac.jp

Department of Electronic Engineering, Tokyo Denki University 5 Senju-Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan,

†:連絡先/Corresponding author

層に注入され、母材結晶中の発光中心に衝突してこれを励起状態へと遷移させる。発光中心は、希土類元素(例: Eu, Tb, Tm など)や遷移金属元素(例: Mn, Cu など)のドーパントであり、母材結晶のバンドギャップ中に局在準位を形成する。励起された発光中心は、基底状態に緩和する際に光を放出する。この発光が、素子外部に取り出されることで、無機 EL デバイスとしての発光が得られる。

このような無機 EL デバイスの駆動には、交流電界の印加が必要であり、駆動回路の設計が重要な役割を果たす、駆動周波数や波形の最適化により、発光効率や輝度の向上が可能であり 3)、材料特性に適した駆動条件の選択が求められる.しかしながら、無機 EL デバイスの材料研究と駆動回路設計は、必ずしも連携が取れているとは言えず、両者