研究論文

浮遊帯域溶融法(FZ 法)を用いた β - Ga_2O_3 単結晶への Ir 固溶に関する研究

[†]長尾雅則*,藤田勇真*,丸山祐樹*,綿打敏司*,三木一司**,田中 功*

Investigation of Iridium Solubility into β-Ga₂O₃ Single Crystals by Floating Zone Method

by

[†] Masanori NAGAO*, Yuma FUJITA*, Yuki MARUYAMA*, Satoshi WATAUCHI*, Kazushi MIKI** and Isao TANAKA*

(Received Dec. 5, 2024; Accepted Jan. 16, 2025)

Abstract

Ir-doped β -Ga₂O₃ single crystals were grown by the floating zone method using an optical image furnace to investigate iridium solubility. When the nominal Ir-content of feed materials was more than 0.05 atomic percent in the Ga-site, Ir metal inclusions appeared in the grown β -Ga₂O₃ crystals. Then the Ir concentration in the β -Ga₂O₃ matrix was estimated to be 5.0 \pm 2.9 \times 10¹⁶ cm⁻³.

Keywords: Wide bandgap semiconductor, β-Ga₂O₃, Iridium solubility

1. 緒言

酸化ガリウム(Ga_2O_3)は、大きなバンドギャップを有する(4.5-4.9 eV)ことから、ワイドギャップ半導体材料として注目されている $^{1,2)}$. Ga_2O_3 には、 α 、 β 、 γ 、 δ 、 ϵ 、 κ o 6種類の結晶多形が存在し $^{3)-5}$ 、 β 型が最も安定な構造である. そのため、 β 型の $Ga_2O_3(\beta$ - $Ga_2O_3)$ 単結晶がチョクラルスキー法 (CZ 法) 6 、垂直ブリッジマン法 (VB 法) 7 、Edge-defined Film-fed Growth 法 (EFG 法) 8 および浮遊帯域溶融法 (FZ 法) 9,10 などによって育成されており、最近では、VB 法によって直径 6 インチの単結晶育成が報告されている 11 . 量産品として 2 インチの 6 - 6

法では、Ir ルツボを用いており、これは、 β - Ga_2O_3 への Ir 固溶量が小さいことに由来している。しかし、Ir ルツボを用いた CZ 法による結晶育成の実験から Ir がわずかではあるが固溶するという報告があり、その濃度は、 10^{16} cm⁻³ 程度 I^{-12} と I^{-12} と I^{-13} の異なる結果が報告されている。Ir が Ga_2O_3 に固溶すると I^{-14} として I^{-14} として I^{-14} は、 $I^{$

令和6年12月5日受付

* 山梨大学大学院総合研究部附属クリスタル科学研究センター:山梨県甲府市宮前町 7-32

TEL 055-220-8610

mnagao@yamanashi.ac.jp

Center for Crystal Science and Technology, University of Yamanashi, 7-32 Miyamae, Kofu, Yamanashi 400-0021, Japan

** 兵庫県立大学工学部:兵庫県姫路市書写 2167 School of Engineering, University of Hyogo, 2167 Syosya, Himeji, Hyogo 671-2280, Japan

†:mnagao@yamanashi.ac.jp

2. 実験方法

 β -Ga₂O₃(稀産金属株式会社:99.99%)と IrO_2 (フルウチ化学株式会社:99.9%)の粉末を($Ga_{1-x}Ir_x$)₂O_{3+ δ}($x=3\sim10\times10^4$)の仕込み組成に秤量し、エタノールを加えて湿式混合した。これを 700° C 10 時間大気中で焼成後、再び湿式混合し、 1000° Cで 10 時間大気中において焼成した。2 回焼成した粉末を乾式混合後、ゴム風船に詰めて棒状にして、静水