研究論文

シール用ふっ素ゴムにおけるラジカル消耗速度のひずみ依存性

[†]飛矢地鴻太*, 家泉直文*, 久保内昌敏**, クルニアワンウィナルト***, 木挽一彦*, 田窪 毅*

Relationship between Radical Thinning Rate and Tensile Strain of Fluoroelastomer for Sealing Parts

by

[†] Kota HIYAJI*, Naofumi IEZUMI*, Masatoshi KUBOUCHI**, Winarto KURNIAWAN***, Kazuhiko KOBIKI*, Tsuyoshi TAKUBO*

(Received Feb. 5, 2025; Accepted Apr. 10, 2025)

Abstract

Dry etching equipment for semiconductor manufacturing requires a high vacuum condition in the etching chamber, so numerous sealing parts are used. However, the radical gases that are byproducts of the etching process cause chemical reactions with the materials used for sealing parts, such as elastomer, causing them to degrade and shorten their service life. Therefore, technology to accurately predict the life of sealing parts has been demanded. In this work, we first compared the change in radical thinning rate as a function of compression ratio for O-ring-shaped fluoroelastomer specimens. As a result, it was found that the higher the compression ratio, the higher the radical thinning rate. Since the O-ring surface under compression is mainly subjected to tensile strain, radical exposure tests under uniaxial tensile strain were also conducted on the strip-shaped specimens. From the test results, it was found that the radical thinning rate was dependent on tensile strain, and the relationship between the radical thinning rate and tensile strain could be formulated.

Keywords: Radical thinning, Fluoroelastomer, Semiconductor manufacturing equipment, Sealing parts

1. 緒言

2018年からの米中の貿易摩擦に端を発した世界的な半導体不足 ¹⁾は、新型コロナウィルスのパンデミックによるテ

令和7年2月5日受付

* 三菱電線工業株式会社技術開発本部:兵庫県尼崎市東向島西之町8

TEL 06-6530-3674 FAX 06-6530-3638

kotahiya@mitsubishi-cable.co.jp

Engineering & Development Division, Mitsubishi Cable Industries, Ltd.: 8 Nishino-cho, Higashi-mukojima, Amagasaki, Hyogo, 660-0856, Japan

- ** 東京科学大学物質理工学院:東京都目黒区大岡山 2-12-1 School of Materials and Chemical Technology, Institute of Science Tokyo:
- 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan *** 秋田工業高等専門学校:秋田県秋田市飯島文京町 1-1 National Institute of Technology, Akita College:

1-1 Iijimabunkyocho, Akita, Akita, 011-8511, Japan

†:連絡先/Corresponding author

レワーク需要の増加²⁾、欧州・中国での自動車電動化の促進³⁾、またロシア・ウクライナ情勢の緊迫化などの要因により加速したものの、2022 年頃から需給バランスは平常時に近づき、2023 年には供給が上回る状況となった。しかし2024 年に入り生成 AI の急速な技術革新と市場拡大にともない、メモリ、プロセッサなどの半導体部品の急伸が見込まれている。また近年はそれら半導体の微細化・高集積化要求の高まりにともなって、ドライエッチングプロセス⁴⁾の需要が大幅に増加している。そのプロセスを担うドライエッチング装置の市場は、2010 年代後半にはそれまで首位であった露光装置を上回り、現在、数ある半導体製造装置の中で最大規模の市場となるまでに成長した⁵⁾.

プラズマ化した反応ガスによりエッチングを行うこのプロセスでは、エッチングチャンバー内を高真空状態に維持