研究論文

水による CO₂ 光還元反応のための γ-Ga₂O₃ 担持 α-Ga₂O₃ 触媒の合成

川合康佑*,太田尚人**,荒井重勇***,山本宗昭***,田邉哲朗*,「吉田朋子*

Synthesis of γ-Ga₂O₃ Supported by α-Ga₂O₃ Photocatalyst for CO₂ Reduction with Water

by

Kosuke KAWAAI*, Naoto OTA**, Shigeo ARAI***, Muneaki YAMAMOTO***, Tetsuo TANABE* and [†]Tomoko YOSHIDA*

(Received Aug. 7, 2025; Accepted Aug. 25, 2025)

Abstract

 Ga_2O_3 has attracted attention as a photocatalyst for CO_2 reduction with water into CO. In our previous studies, we successfully synthesized Ga_2O_3 photocatalysts consisting of mixed phases of α and γ , and β and γ which showed high activity. However, the cause of their high activity remained unclear. In the present work, we have synthesized γ - Ga_2O_3 supported by α - Ga_2O_3 (γ - Ga_2O_3/α - Ga_2O_3) with different ratios of two crystalline phases and examined their photocatalytic activity to reveal the reaction mechanism.

 γ -Ga₂O₃/ α -Ga₂O₃ photocatalysts were synthesized by impregnation method and photocatalytic CO₂ reduction with water was conducted. Based on the results of photocatalytic reaction, we discuss the mechanism of CO formation over γ -Ga₂O₃/ α -Ga₂O₃ photocatalysts. H is generated on the α phase and migrates to the γ phase, where CO₂ is adsorbed and reduced by the migrated H to produce CO.

Keywords: Photocatalyst, CO₂ reduction, Ga₂O₃

令和7年8月7日受付

- * 名古屋大学大学院工学研究科エネルギー理工学専攻: 愛知県名古屋市千種区不老町
 - Department of Energy Engineering, Graduate School of Engineering, Nagoya University: Furo-chou, Chikusa-ku, Nagoya-shi, Aichi Japan
- ** 大阪公立大学大学院工学研究科化学バイオ工学分野: 大阪市住吉区杉本 3-3-138
 - Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University: 3-3-138 Sugimoto, Sumiyoshiku-ku, Osaka, Japan
- *** 名古屋大学未来材料・システム研究所:名古屋市千種 区不老町
 - Institute of Materials and Systems for Sustainability, Nagoya University: Furo-chou, Chikusa-ku, Nagoya-shi, Aichi Japan
- **** 名古屋大学大学院工学研究科総合エネルギー工学専 攻:同上

Department of Applied Energy, Graduate School of Engineering: Same as above TEL 052-789-5935

tyoshida@energy.nagoya-u.ac.jp

†:連絡先/Corresponding author

1. 緒言